organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Donald J. Darensbourg,* Damon R. Billodeaux and Poulomi Ganguly

Department of Chemistry, Texas A&M University, College Station, TX 77843, USA

Correspondence e-mail: djdarens@mail.chem.tamu.edu

Key indicators

Single-crystal X-ray study T = 110 KMean σ (C–C) = 0.005 Å R factor = 0.061 wR factor = 0.141 Data-to-parameter ratio = 8.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

cis-Perhydro-1,4-benzodioxin-2,3-dione

The title compound, $C_8H_{10}O_4$, crystallizes in the noncentrosymmetric space group $Pna2_1$ with two molecules in the asymmetric unit. The structure is characterized by fused cyclohexyl and cyclic diester rings. There is a twist of 60° about the ring fusion. The molecules are characterized by an average C=O bond of 1.199 (8) Å, an average sp^2 C–O bond of 1.328 (8) Å, and an average sp^3 C–O bond of 1.469 (8) Å. Received 25 March 2004 Accepted 16 April 2004 Online 30 April 2004

Comment

The title compound, (I), is the major product of the reaction of oxalyl chloride and *cis*-1,2-cyclohexanediol in the presence of triethylamine; the corresponding cyclic carbonate forms as the minor product (Itaya & Iida, 1994; Itaya *et al.*, 2002). Despite significant study in the literature (Lloyd *et al.*, 1975; Kim *et al.*, 1991; Itaya & Iida, 1994; Itaya *et al.*, 2002), a crystallographic study has never been published. We report the structure of (I) here.

The structure of (I) contains two independent molecules in the asymmetric unit. Each comprises two fused six-membered rings: a cyclohexyl ring and a cyclic diester. The average $Csp^3 - Csp^3$ bond distance is 1.524 (10) Å within both molecules A and B. All C=O and C-O bonds are in close agreement both within each molecule and between molecules A and B. Both cyclic diesters are twisted by about 60° about the ring fusion (C2-C7) as indicated by their respective torsion angles [O3-C2-C7-O4 = -60.0 (3)° and -60.7 (3)° for A and B, respectively]. In the crystal structure, there are three types of weak intermolecular C-H···O interactions (see Table 2).

Experimental

The title compound was prepared according to literature methods (Itaya *et al.*, 2002). X-ray quality crystals were grown by diffusion of hexanes into a concentrated benzene solution at 283 K.

Crystal data

 $\begin{array}{l} C_8 H_{10} O_4 \\ M_r = 170.16 \\ \text{Orthorhombic, } Pna 2_1 \\ a = 12.088 \ (5) \ \text{\AA} \\ b = 20.492 \ (9) \ \text{\AA} \\ c = 6.289 \ (3) \ \text{\AA} \\ V = 1557.8 \ (12) \ \text{\AA}^3 \\ Z = 8 \\ D_x = 1.451 \ \text{Mg m}^{-3} \end{array}$

Data collection

Bruker SMART 1000 CCD diffractometer ω and φ scans Absorption correction: none 9120 measured reflections 1930 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0926P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.061$	+ 0.117P]
$wR(F^2) = 0.141$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
1930 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Mo $K\alpha$ radiation

reflections

 $\mu = 0.12 \text{ mm}^{-1}$

T = 110 (2) K

 $\begin{aligned} R_{\rm int} &= 0.033\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$

 $h = -15 \rightarrow 14$

 $k = -23 \rightarrow 26$

 $l = -8 \rightarrow 6$

Needle, colorless $0.65 \times 0.25 \times 0.05 \text{ mm}$

 $\theta = 5.2-46.1^{\circ}$

Cell parameters from 54

1657 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

C1A-01A	1.196 (4)	O1B-C1B	1.197 (4)
C1A-O3A	1.327 (4)	O2B-C8B	1.205 (4)
O2A-C8A	1.197 (4)	C1B - O3B	1.331 (4)
O3A - C2A	1.468 (4)	O3B-C2B	1.467 (4)
C7A - O4A	1.464 (4)	C7B - O4B	1.475 (4)
O4A-C8A	1.323 (4)	O4B - C8B	1.331 (4)
O1A - C1A - O3A	122.1 (3)	O1B-C1B-O3B	122.1 (3)
O1A - C1A - C8A	120.3 (3)	O1B-C1B-C8B	120.1 (3
O3A - C1A - C8A	117.5 (3)	O3B-C1B-C8B	117.6 (3)
C1A-O3A-C2A	116.8 (2)	C1B - O3B - C2B	116.2 (3)
O3A-C2A-C7A	109.1 (3)	O3B - C2B - C7B	108.6 (3)
O3A-C2A-C3A	106.6 (2)	O3B - C2B - C3B	107.1 (3)
O4A-C7A-C2A	109.3 (3)	O4B-C7B-C2B	108.8 (3)
O4A-C7A-C6A	110.4 (3)	O4B-C7B-C6B	111.2 (3)
C8A-O4A-C7A	119.2 (2)	C8B-O4B-C7B	119.8 (3)
O2A-C8A-O4A	121.5 (3)	O2B - C8B - O4B	121.0 (3)
O2A-C8A-C1A	119.3 (3)	O2B-C8B-C1B	120.2 (3)
O4A-C8A-C1A	119.2 (3)	O4B-C8B-C1B	118.7 (3)
C1A-O3A-C2A-C3A	170.9 (3)	C1B-O3B-C2B-C3B	174.9 (3)
O3A-C2A-C7A-O4A	-60.0(3)	O3B-C2B-C7B-O4B	-60.3 (3
C6A - C7A - O4A - C8A	-91.9 (4)	C6B-C7B-O4B-C8B	-93.3 (4

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2B-H2B\cdots O4A^{i}$	1.00	2.53	3.355 (4)	139
$C2B - H2B \cdots O1A^{ii}$	1.00	2.43	3.136 (4)	127
$C5A - H511 \cdots O2A^{iii}$	0.99	2.45	3.195 (4)	131

Symmetry codes: (i) x, y, 1 + z; (ii) $x - \frac{1}{2}, \frac{3}{2} - y, 1 + z$; (iii) $x - \frac{1}{2}, \frac{3}{2} - y, z$.

Figure 1

The asymmetric unit of (I) (50% probability displacement ellipsoids), with the atomic numbering scheme.

All H atoms were placed in calculated positions, with C–H distances fixed at 0.99–1.00 Å and $U_{\rm iso}$ values at $1.2U_{\rm eq}$ of the carrier C atom. In the absence of anomalous dispersion effects, all Friedel pairs were merged for the final refinement. We are, however, certain of the reported stereochemistry as we began from *cis*-1,2-cyclohexanediol as described in the literature (Itaya *et al.*, 2002).

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors acknowledge funding provided by NSF and the Welch Foundation.

References

Bruker (1999). *SMART, SAINT-Plus* (Version 6.02) and *SHELXTL* (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Itaya, T. & Iida, T. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 1671-1679.

- Itaya, T., Iida, T., Natsutani, I. & Ohba, M. (2002). Chem. Pharm. Bull. 50, 83– 86.
- Kim, K. S., Hurh, E. Y., Na, K. & Chung, D. I. (1991). Synth. Commun. 21, 2361–2367.
- Lloyd, W. D., Navarette, B. J. & Shaw, M. F. (1975). Org. Prep. Proc. Intl. 7, 207–210.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.